Seventh Semester B.E. Degree Examination, May/June 2010 Computer Communication Networks

Time: 3 hrs.

1

2

3

4

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

<u>PART – A</u>

- a. Explain OSI model, with a neat block diagram. Consider a source, destination machine and some intermediate nodes for discussion. (10 Marks)
 - b. How addresses employed (used) in internet employing TCP/IP protocol can be classified?
 - (02 Marks)
 c. What is DSL technology? List different DSLs available. Discus salient features of ASDL.

(08 Marks)

- a. What is framing? How frames can be classified? Explain bit stuffing with the help of an example. (06 Marks)
 - b. What is the meaning of datalink control? Explain stop-and-wait ARQ, using a suitable block diagram. (10 Marks)
 - c. In a stop-and-wait ARQ system the bandwidth of the line is 1 Mbps and 1 bit takes 20 ms to make a round trip. What is the bandwidth delay product? If the system data frames are 1000 bits in lengths, what is the percentage utilization of the link? (04 Marks)
- a. A slotted ALOHA network transmits 200 bit frames using a shared channel with 200 kbps bandwidth. Find the throughput if the system produces 500 frames/sec. (03 Marks)
 - b. A network using CSMA/CD has a bandwidth of 10 Mbps. If the maximum propagation time is 25.6 μsec, what is the minimum size of the frame? (03 Marks)
 - c. Explain token passing method of controlled access of the channel. (06 Marks)
 - d. What is channelization in the context of multiple access? What are the various available channelization techniques? List the properties of orthogonal sequences used in CDMA.

(08 Marks)

- a. Explain 802.3 MAC frame format.
- b. An ethernet MAC sublayer receives 38 bytes of data from upper layer. How many bytes of padding must be added to the data? (02 Marks)
- c. Explain two different kinds of services as defined in IEEE 802.11. (06 Marks)
- d. What is fast ethernet? Explain autonegotiation. What are the purposes of using this feature in design of fast ethernet. (06 Marks)

1 of 2

(06 Marks)

(06 Marks)

PART – B

3	a.	they operate in a network? Explain each of them.	ayer at which (10 Marks)
	b.	Differentiate between a bus backbone network and star backbone network.	(06 Marks)
	c.	Explain the concept of VLAN, in brief.	(04 Marks)
6	a.	What is the need of transition from IPV4 to IPV6? What are the strategies dev	viced by IETF

- to help the transition? (12 Marks) b Find the error if any in the following IPV4 addresses:
- b. Find the error, if any, in the following IPV4 addresses: i) 75.45.301.14 ii) 221.34.7.8.20 (02 Marks)
- c. What is classless addressing in IPV4? What is a mask? Explain.

1. 00

7 a. Explain Dijkstra algorithm. Apply the same to node 'A' of the graph shown in Fig.7(a) and prepare routing table for node A. (06 Marks)

Fig 7(a) Topology of Network

- b. What is tunneling in case of multicast routing? Explain multicast backbone of routers using concept of tunneling? (06 Marks)
- c. Write in brief, any four applications of multicasting.

(08 Marks)

Write short notes on any two of the following :

a. UDP

8

- b. TCP segment format
- c. IPV4 datagram format.

(20 Marks)

* * * * *

(06 Marks)

Seventh Semester B.E. Degree Examination, May/June 2010 Optical Fiber Communication

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

- 1 a. Discuss the advantages of optical fiber communication.
 - b. Derive the necessary mathematical condition that the angle of incidence θ must satisfy for the optical skew ray to propagate in a step index fiber. (08 Marks)
 - c. Estimate the maximum core diameter for an optical fiber with refractive index difference of 1.45% and core refractive index of 1.52 in order that it may be suitable for single-mode operation when operating wavelength is 0.85 μ m. Also calculate cut off wavelength λ_c if core diameter is 1.1 μ m. (06 Marks)
- 2 a. Explain material absorption losses of optical energy in silica glass fibers roughly sketching their contribution at different wavelengths (06 Marks)
 - b. Explain what is material dispersion. Derive an expression for material dispersion starting from the expression for group delay. (08 Marks)
 - c. An 8 km optical link consists of multimode step index fibre with a core refractive index of 1.45 and relative index difference of 1.2%. Estimate :
 - i) The delay difference between the slowest and fastest modes at the fiber output
 - ii) The rms pulse broadening due to intermodal dispersion. (06 Marks)
- 3 a. Draw the cross-section of Ga Al As double-hetero structure LED, energy band diagram and refractive index variation. Explain their importance. (07 Marks)
 - b. Sketch and explain the Fabry-Perot resonator cavity of a laser diode. (07 Marks)
 - c. A GaAs laser operating at 850 nm has 450 μ m length and refractive index $\eta = 3.5$. What are the frequency and wavelength spacing? If the half power point, $\lambda \lambda_0 = 2.5$ nm, what is the spectral width σ of the gain? (06 Marks)
 - a. Describe the different types of mechanical misalignments while joining two similar fibers. Compare their relative losses. (05 Marks)
 - b. Explain different mechanical splicing methods. (06 Marks)
 - c. Explain with a neat diagram the design of a basic ferrule connector. (05 Marks)
 - d. A four port multimode fiber FBT coupler has 50 μw optical power launched into port 1. Measured output at ports 2, 3 and 4 are 0.004, 26.0 and 27.5 μw respectively. (Ports 1 and 4 are input and output of one fiber and ports 2 and 3 are input and output of another fiber respectively). Calculate insertion losses and cross-talk. (04 Marks)

1 of 2

4

(08 Marks)

(06 Marks)

PART – B

- 5 a. Draw the signal path through a digital link with relevant components and optical/electrical waveforms at every stage. (06 Marks)
 - b. Explain with a neat diagram the fundamental concept of coherent detection.
 - c. What is a burst mode receiver? Explain.
- 6 a. Following are the parameters of a point-to-point optical link:
 - i) Optical power launched : +5 dBm
 - ii) Sensitivity of detector : -30 dBm
 - iii) Source/detector connector loss : 1 dB
 - iv) Length of optical cable : 55 km
 - v) Cable attenuation : 0.3 dB/km
 - vi) Jumper cable loss : 2.5 dB
 - vii) Connector loss at each fiber joint : 1 dB

Assume two jumper cables and two cable joints. Compute the power margin of the link. Explain the significance of power budget and system margin. (08 Marks)

- b. In a multimode link using LED as optical source, material dispersion related rise time degradation is 20 ns over the 5 km link. Receiver has 30 MHz bandwidth. Fiber has 500 MHz. km bandwidth distance product with mode mixing parameter q = 0.7. Assuming LED with drive circuit has rise time of 15 ns, calculate link rise time. (06 Marks)
- Explain with a neat diagram the functioning of radio-over-fiber links of a broadband wireless access network. (06 Marks)
- 7 a. Explain the operational principle and implementation of WDM with diagrams. (07 Marks)
 - b. Explain the functioning of optical isolator with sketches of components involved. (06 Marks)
 - c. Explain tunable light sources
- 8 a. Explain in detail the amplification mechanism with energy level diagram in an EDFA.

(08 Marks)

(07 Marks)

b. Draw and explain the basic structure of an STS-N SONET and STM-N SDH frames.

(06 Marks)

Explain the working of ultra-fast point-to-point transmission system using optical TDM operating at 160 Gb/s with a neat diagram. (06 Marks)

2 of 2

Seventh Semester B.E. Degree Examination, May/June 2010 Power Electronics

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

- 1a. List out some applications of power controller.(06 Marks)b. Write the characteristic features of following power devices.(06 Marks)i) SCR ;ii) TRIAC ;iii) LASCR ;v) MCT ;v) SITH.c. Compare the characteristic of power MOSFET and 1GBT.(04 Marks)
- a. Discuss the steady state characteristics power MOSFETS compare this with characteristics of power BJT. (10 Marks)
 - b. The beta (β) bipolar transistor shown in Fig.2(b) below varies from 12 to 75. The load resistance $R_C = 1.5 \Omega$. The dc supply voltage is $V_{CC} = 40 V$ and input voltage to the base circuit $V_B = 6V$, if $V_{CE(sat)} = 1.2 V$, $V_{BE(sat)} = 1.6 V$, $R_B = 0.7 \Omega$. Determine :

Vce

- i) Overdrive factor (ODF)
- ii) The forced β and

controlled rectifier.

iii) The power loss in the transistor P_T .

Fig.2(b)

3 a. Define the following term with respect to SCR :

i) Latching current ii) Holding current

- iii) Turn-on time ; iv)Turn off time.
- b. The latching current for SCR inserted in between a dc voltage source of 200 V and load is 100 mA. Calculate the minimum width gate pulse current required to turn-on this SCR in case the load consist of i) L = 0.2 H ; ii) R = 20 Ω in series with L = 0.2 H. (06 Marks)
 c. With help of neat circuit diagram and waveforms, explain RC firing circuit used with half
- a. What is the need of di/dt protection and dv/dt protection? Explain how protection is provided. (04 Marks)
- b. The input voltage of Fig.4(b), $V_s = 200$ V with load resistance R = 5 Ω and the load and stray inductance are negligible and thyristor is operated at $f_s = 2$ kHz. If the required dv/dt is 100 V/µs. The discharge current is limited to 100 A. Determine :
 -) The values R_s and C_s ; ii) The snubber loss.

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

4

(10 Marks)

(08 Marks)

(06 Marks)

(08 Marks)

c. Explain the operation of single phase semi-converter with highly inductive load. Derive the expression for V_{dc} and V_{rms}. (08 Marks)

PART – B

- 5 a. What is forced commutation? With help of neat diagram and relevant equations, explain the operations of self commutation circuit. (10 Marks)
 - b. Derive the equation for turn-off time of SCR in impulse commutated circuit for the following circuit. For the impulse commutated thyristor circuit shown in Fig.5(b). Determine turn-off time of the circuit for $R = 10 \Omega$ and $C = 20 \mu F$ and supply voltage $V_s = 220 V$.

(10 Marks)

- 6 a. What are advantages and disadvantages ON-OFF control and phase control of ac voltage controller? (08 Marks)
 - b. For the AC voltage controller shown in the following fig.6(b), the delay angles of thyristors are equal and $\alpha_1 = \alpha_2 = \frac{2\pi}{3}$. Determine the
 - i) RMS O/P voltage
 - ii) Input power factor
 - iii) Average and Rms current of the thyristors.

- 7 a. What is chopper? Explain principle of step up chopper with relevant equations. (10 Marks)
 - b. Give the classification of chopper. Explain briefly each one of them. (10 Marks)
- 8 a. Write the principle of operation of 1 φ inverter with relevant diagram and waveform. Also discuss the performance parameter. (10 Marks)
 - b. The 1 ϕ full bridge inverter has resistive load R = 2.4 Ω the dc input voltage V_s = 48 V. Determine :
 - i) RMS output voltage at fundamental frequency
 - ii) The output power
 - iii) The average and peak current of each transistor. (10 Marks)

Seventh Semester B.E. Degree Examination, May/June 2010 DSP Algorithms and Architecture

Time: 3 hrs.

1

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

- a. Explain the issues to be considered in designing and implementing a DSP system, with the help of a neat block diagram. (06 Marks)
 - b. Briefly explain the major features of programmable DSPs. (06 Marks)
 - c. Explain the operation used in DSP to increase the sampling rate. The sequence x(n) = [0, 2, 4, 6, 8] is interpolated using interpolation sequence $b_R = [1/2, 1, 1/2]$ and the interpolation factor is 2. Find the interpolated sequence y (no. (08 Marks))
- 2 a. What is the role of shifter in DSP? Explain the implementation of 4-bit shift right barrel shifter, with a diagram. (06 Marks)
 - b. Identify the addressing modes of the operands in each of the following instructions and their operation.
 - i) ADD B ; ii) ADD # 1234 h ; iii) ADD 5678 h ; iv) ADD + * addrreg. (08 Marks)
 c. Explain the features of a program sequencer unit of a programmable DSP with a neat block diagram. (06 Marks)
- 3 a. Describe the multiplier/adder unit of TMS 320 C 54 xx processor with a neat block diagram. (06 Marks)
 - b. Describe any four data addressing modes of TMS 320 C 54 xx DSP with examples. (08 Marks)
 - c. Assume that the current contents of AR3 to be 400 h, what will be its contents after each of the following TMS 320 C 54 xx addressing modes is used? Assume that the contents of ARO are 40 h.

i)
$$*AR3 + 0$$
; ii) $*AR3 + ;$ iii) $*AR3 + OB.$ (06 Marks)

4 a. Describe the operation of the following instructions of TMS 320 C54 xx processor, with an example.

i) MAC ; ii) RPT ; iii) MPY.

- b. Describe the operation of hardware timer with a neat diagram.
- c. By means of a figure explain the pipeline operation of the following sequence of instruction if the initial values of AR1, AR3, A are 104, 101, 2 and the values stored in the memory locations 101, 102, 103, 104 are 4, 6, 8, 12. Also provide the values of registers AR3, AR1, T and accumulator after completion of each cycle.

ADD * AR3 +, A LD * AR1 +, T MPY * AR3 +, B ADD B, A

1 of 2

(06 Marks)

(06 Marks)

(06 Marks)

PART – B

- 5 a. Describe the importance of Q-notation in DSP algorithm implementation, with examples. What are the values represented by 16 – bit fixed point number N = 4000 h in Q15, Q10, Q7 notations? (10 Marks)
 - b. Explain how the FIR filter algorithms can be implemented using TMS 320 C54 xx processor. (10 Marks)
- 6 a. Explain a general DITFFT butterfly in place computation structure. (04 Marks)
 - b. Determine the number of stages and number of butterflies in each stage and the total number of butterflies needed for the entire computation of 512 point FFT. (06 Marks)
 - c. Explain how the bit-reversed index generation can be done in 8 point FFT. Also write a TMS 320 C 54 xx program for 8 point DIT FFT bit reversed index generation. (10 Marks)
- 7 a. Explain the memory interface block diagram for the TMS 320 C 54 xx processor. (06 Marks)
 b. Draw the I/O interface timing diagram for read write read sequence of operation.
 - c. What are interrupts? How interrupts are handled by the C 54 xx DSP processors. (08 Marks)
- 8 a. Explain with a neat diagram, the synchronous serial interface between the C54 xx and a CODEC device. (06 Marks)
 - b. Explain the operation of Pulse Position Modulation (PPM) to encode two biomedical signals. (06 Marks)
 - c. Explain with a neat block diagram, the operation of the pitch detector. (08 Marks)

06EC756

(08 Marks)

(06 Marks)

Seventh Semester B.E. Degree Examination, May/June 2010 Image Processing

Time: 3 hrs.

2

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

- a. With the help of a neat block diagram, explain the components of a general purpose image processing system. (12 Marks)
 b. Explain the digital representation of an image, and obtain an expression for the storage size
 - b. Explain the digital representation of an image, and obtain an expression for the storage size of an image. (08 Marks)
 - a. With a neat sketch, explain microdensitometer image acquisition system. (08 Marks)
 - b. Let p and q be the pixels at coordinates (10, 12) and (15, 20), respectively. Find out which distance measure gives the minimum distance between the pixels. (06 Marks)
 - c. Mention the various applications of digital image processing. (06 Marks)
- 3 a. Explain in brief the following properties of the discrete Fourier transform as applied to images: i) Separability ii) Periodicity iii) Convolution and correlation
 - iv) Average value v) Translation (10 Marks) b. With a neat block diagram and relevant filter response, explain homomorphic filtering approach for image enhancement. (10 Marks)
- 4 a. Define 2-D forward and inverse discrete cosine transform, and mention its properties.
 - b. Generate Hadamard transform matrix H_n for n = 3 from the core matrix $H_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. Indicate its sequency. (06 Marks)
 - c. For the given orthogonal matrix A and image U, obtain the transformed image V. Compare the energy in U and V, and give your inference.

 $\mathbf{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \mathbf{U} = \begin{bmatrix} 6 & 3 \\ 12 & 1 \end{bmatrix}$

PART – B

- 5 a. Explain image subtraction and image averaging operations, with one example each.
 - b. Using the second derivative, develop a Laplacian mask for image sharpening. (10 Marks) (10 Marks)
- 6 a. Explain and compare ideal low pass filter and Butterworth filter in image smoothing.
 - b. Bring out the difference between spatial domain and frequency domain image enhancement approaches (05 Marks)
 - c. Implement the Laplacian in frequency domain to sharpen the images. (05 Marks)
- 7 a. Explain any two types of noise pdfs commonly dealt with image restoration process.
 - (08 Marks)
 b. What is an order statistic filter? Explain any two such filters, and compare their relative merits and demerits.
 (08 Marks)
 - c. Explain in brief the inverse filtering approach and its limitation in image restoration. (04 Marks)

8 a. Write a note on the RGB colour model, with neat diagrams. (10 Marks)

b. What is pseudo colour image processing? Explain any one such method with neat diagrams. (10 Marks)

* * * * *

06EC762

Seventh Semester B.E. Degree Examination, May/June 2010 Real Time Systems

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part. 2. Standard notations are used.

PART – A

1	a. b.	Define RTS and explain computer control system, with a suitable diagram. Classify the types of programmes and explain DDC, with a neat diagram.	(08 Marks) (08 Marks)
	c.	write any four responsibilities of a control engineer.	(04 Marks)
2	a. b.	Explain distributed system, with a neat diagram and mention the features of HCI. Explain the following : i) Supervisory control system	(10 Marks)
		ii) Batch process and continuous process.	(10 Marks)
3	a.	Mention the features of specialized processors and explain MIMD, with a neat dia	gram.
	b.	List the various requirements in programming languages used for real time application	(08 Marks) ations. (12 Marks)
4	а. ь	Explain simple table-driven approach used for application oriented software.	(08 Marks)
	0.	configuration.	(12 Marks)
5	а	PARI – B Explain with a suitable diagram the multi-user and multi-tasking operating system	18
5	u.	Explain with a suitable enagrain the multi-user and multi-tasking operating system	(10 Marks)
	b.	What are the functions of a task management module? Explain various tasks state	es, with the
		help of a state diagram	(10 Marks)
6	а	Explain with a peat diagram, the general structure of IOSS	(06 Marks)
U	b.	What is the principal difference between pool and channel?	(00 Marks) (04 Marks)
	c.	Define liveness. List the set of functions and primities for RTOS.	(10 Marks)
7	а	Explain software design for RTS using software module	(10 Marks)
'	b.	Explain with a diagram, data sharing using common memory.	(06 Marks)
	c.	Mention the importance of conditions flag and binary semaphores.	(04 Marks)
8	a.	What do you mean by enhancing the model? Explain with a neat diagram, the	relationshir
		between real environment and virtual environment.	(08 Marks)
	b.	Write short notes on any two : i) PSPEC, and CSPEC.	
		ii) Software modelling	
		iii) YOUR DON methodology.	(12 Marks)

* * * *

(10 Marks)

USN

Seventh Semester B.E. Degree Examination, May/June 2010 Human Resource Management

Time: 3 hrs.

them.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1	a.	Define human resource management. Mention its functions and objectives. I	Explain its
	1	objectives briefly.	(IU Marks)
	Ь.	Mention the external and internal forces which affect on human resource ma	magement.
		Describe any three of them.	(10 Marks)
2	a.	What is human resource planning?	(02 Marks)
	b.	What are the factors affecting human resource planning? Explain any two of them	.(09 Marks)
	c.	What do you mean by job analysis? Explain the process of job analysis.	(09 Marks)
3	a.	What is job design? Explain any two factors affecting job design.	(10 Marks)
	b.	Define recruitment. Bring out the factors, which influence recruitment.	(10 Marks)
	0.		
4	а	What is selection? Explain the process of selection.	(10 Marks)
-	h.	Explain the various inputs required for a training and development programme.	(10 Marks)
	0.	Explain the various hiputs required for a naming and accorption programmer	()
		PADT - B	
		TARI - D	
5	0	Bring out the verious employee henefits and services. Describe each in brief	(10 Marks)
3	а. Ь	Explain any two types of incentive schemes	(10 Marks)
	0.	Explain any two types of incentive schemes.	(10 10141 K3)
			(10.34 1.)
6	a.	Discuss the various types of welfare activities.	(10 Marks)
	b.	Outline the causes for industrial accidents. How can they be avoided?	(10 Marks)
7	a.	Bring out the parties and their roles in industrial relations.	(10 Marks)
	b.	Define a trade union. Why do employees join the unions? Explain.	(10 Marks)
8	a.	Define the term ethics. Trace the sources of ethics. Why is ethics important?	(10 Marks)
	b.	What is HRM evaluation? What are the approaches to HRM evaluation? Explain	any two of
